Search results for "neutron star: binary"

showing 10 items of 17 documents

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and Ic…

2019

[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCub…

Astrofísicacollapse [supernova]neutron star: binaryEVENTS GW150914Gravitació010504 meteorology & atmospheric sciencesneutrino: energy: highAstronomyRAYBinary numberbinary [neutron star]Astrophysics7. Clean energy01 natural sciencesPhysical ChemistryAtomicIceCubeneutrinoParticle and Plasma PhysicsAstronomi astrofysik och kosmologiblack holeAstronomy Astrophysics and CosmologyLIGO010303 astronomy & astrophysicsgravitational waveELECTROMAGNETIC SIGNALSQCQBSettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HE[PHYS]Physics [physics]Astrophysics::Instrumentation and Methods for Astrophysicsneutrinosgravitational waves; neutrinos520 Astronomie und zugeordnete Wissenschaftenddc:observatorySupernovagravitational wavesastrophysics: densityPhysical SciencesNeutrinoAstrophysics - High Energy Astrophysical Phenomenagravitational waves; neutrinos; Astronomy and Astrophysics; Space and Planetary ScienceAstronomical and Space SciencessignaturePhysical Chemistry (incl. Structural)supernova: collapseAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsGravitational wavesemission [gravitational radiation]Ones gravitacionalsCoincident0103 physical sciencesGravitational Waves Neutrinos LIGO Virgo Antares IceCubeNuclearddc:530Neutrinsenergy: high [neutrino]NeutrinosSTFCAstrophysiqueAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyANTARESGravitational waveVirgoOrganic ChemistryAstronomyRCUKMolecularAstronomy and AstrophysicsAstronomieAstronomy and Astrophysic530 PhysikLIGOSciences de l'espaceBlack holemessengerNeutron starAntaresPhysics and AstronomySpace and Planetary ScienceFISICA APLICADA:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]gravitational radiation: emissiondensity [astrophysics]ddc:520[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]EMISSION
researchProduct

All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

2021

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…

binary: orbitneutron star: binaryPhysics and Astronomy (miscellaneous)Astronomybinary [neutron star]AstrophysicsGravitational Waves; LIGO (Observatory); Neutron Stars01 natural sciencesneutron starsGeneral Relativity and Quantum CosmologyMonte Carlo: Markov chainPhysics Particles & Fieldsbinary starsbinary systemsBinary SystemsLIGOgravitational waveQCQBpulsarastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySettore FIS/03Physicsorbit [binary]General relativityPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenabinary stardata analysis methodsensitivity [detector]General relativitygr-qcfrequency [modulation]Populationneutron star: spinFOS: Physical sciencesalternative theories of gravityMarkov chain [Monte Carlo]General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational Waves Neutron Stars Binary Systems LIGO VirgoLIGO (Observatory)emission [gravitational radiation]Pulsarbinary: coalescence0103 physical sciencesBinary starddc:530spin [neutron star]background [gravitational radiation]010306 general physicseducationSTFCOrbital elementsGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundmodulation: frequencyRCUKNeutron StarsLIGOgravitational radiation detectordetector: sensitivityNeutron starVIRGOgravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]binary stars; neutron stars
researchProduct

Properties of the Binary Neutron Star Merger GW170817

2019

On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which ar…

AstrofísicaGravitacióneutron star: binaryAstronomyGeneral Physics and AstronomyBinary numberAstrophysicsELECTROMAGNETIC COUNTERPARTspin01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESlocalization010305 fluids & plasmasGravitational wave detectorsEQUATIONenergy: densityLIGOGEO600QCastro-ph.HESettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSSettore FIS/05PhysicsEquations of stateGravitational effectsGravitational-wave signalsDeformability parameterAmplitudePhysical SciencesPhysical effectsINSPIRALING COMPACT BINARIES[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Spectral energy densityAstrophysics - High Energy Astrophysical PhenomenaPARAMETER-ESTIMATIONBinary neutron starsdata analysis methodgr-qcQC1-999Physics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesBayesianGravimeterselectromagnetic field: productionPhysics and Astronomy (all)galaxy: binary0103 physical sciencesddc:530SDG 7 - Affordable and Clean Energy010306 general physicsgravitational radiation: frequencySTFCAstrophysics::Galaxy Astrophysicsequation of stateLIGHT CURVESEquation of stateScience & Technology/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energySpinsgravitational radiationRCUKSpectral densityKILONOVATRANSIENTSbinary: compactStarsGEO600GalaxyLIGOgravitational radiation detectorNeutron starVIRGOPhysics and Astronomygravitational radiation: emissionRADIATIONBayesian AnalysisDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Tests of General Relativity with GW170817

2019

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyTestingGravitational WaveGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologystrong fieldddc:550general relativityLIGOQCSettore FIS/01PhysicsPhysicsGravitational effectsarticlePolarization (waves)Gravitational-wave signalsExtra dimensionsgravitational wavesPhysical SciencesExtra dimensions[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Large extra dimensiondispersionBinary neutron starsgravitational radiation: polarizationGeneral RelativityGeneral relativitygr-qcPhysics MultidisciplinaryGRAVITATIONAL-WAVE OBSERVATIONSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)gravitational wavesblack holesGravity wavesMASSgravitational radiation: direct detectionGravitation and Astrophysicselectromagnetic field: productionRelativityGeneral Relativity and Quantum CosmologyDipole radiationsGRAVITYTests of general relativitygravitation: weak field0103 physical sciencesddc:530High Energy Physicscapture010306 general physicsGravitational Wave; General RelativitySTFCradiation: dipolepolarizationScience & TechnologyStrong fieldGravitational wavegravitational radiationRCUKbinary: compactgravitational radiation detectorLIGONeutron starVIRGODewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikNewtonianshigher-dimensional
researchProduct

Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog

2021

Abbott, R., et al. (LIGO and Virgo Collaboration)

neutron star: binary010504 meteorology & atmospheric sciencesAstronomyAstrophysicsspin01 natural sciencesGeneral Relativity and Quantum Cosmologymass spectrumMassive starsAGN DISCSLIGO010303 astronomy & astrophysicsQCFocus on Gravitational-wave Astrophysics from the Second LIGO-Virgo Transient CatalogQBSettore FIS/01High Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicseducation.field_of_studyMass distributionSettore FIS/05Astrophysical black holesStellar mass black holesBINARY MERGERSJustice and Strong InstitutionsCompact Binary Populations Gravitational Waves GW Transient Cataloggravitational wavesAStrophysical black holesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaYOUNG STAR-CLUSTERSEFFECTIVE SPIN DISTRIBUTIONmass: asymmetryBLACK-HOLE MERGERSSDG 16 - PeaceexceptionalNEUTRON-STARSgr-qcPopulationFOS: Physical sciencesgapContext (language use)General Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsPUBLIC ADVANCED LIGOGravitational waves; Astrophysical black holes; Stellar mass black holes; Massive stars; Compact objects; Bayesian statisticsAstronomy & AstrophysicsBayesian statisticsangular momentumGravitational wavesSettore FIS/05 - Astronomia e Astrofisicaprecession0103 physical sciencesstructureeducationcaptureCompact objectsAstrophysics::Galaxy AstrophysicsSTFC0105 earth and related environmental sciencesMASS-DISTRIBUTIONBLACK-HOLE MERGERS; YOUNG STAR-CLUSTERS;EFFECTIVE SPIN DISTRIBUTIONHIERARCHICAL MERGERSScience & TechnologyStar formationGravitational waveSDG 16 - Peace Justice and Strong Institutionsgravitational radiationRCUKAstronomy and Astrophysicsredshiftbinary: compact/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie KartographieLIGORedshiftNeutron starVIRGOblack hole: binaryGravitational Waves Compact Binaries[SDU]Sciences of the Universe [physics]Space and Planetary Scienceddc:520[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Compact BinariesDYNAMICAL FORMATION
researchProduct

The advanced Virgo longitudinal control system for the O2 observing run

2020

Following a successful period of data-taking between 2006 and 2011, the Virgo gravitational-wave detector was taken offline for a major upgrade. The changes made to the instrument significantly increased the complexity of the control systems and meant that an extended period of commissioning was required to reach a sensitivity appropriate for science data-taking. This commissioning period was completed in July of 2017 and the second-generation Advanced Virgo detector went on to join the Advanced LIGO detectors in the O2 science run in August of the same year. The upgraded detector was approximately twice as sensitive to binary neutron star mergers as the first-generation instrument. During …

neutron star: binaryPhysics::Instrumentation and DetectorsAstronomycavity: opticalSuspended optical cavities01 natural sciencesGravitational wave detectorsoff-lineGravitational wave detectors; Interferometer; Suspended optical cavities; Control loopsControl loopSuspended optical cavitieLIGOInterferometer010303 astronomy & astrophysicsdetectorsSettore FIS/01Physics[PHYS]Physics [physics]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsGravitational wave detectors Interferometer Suspended optical cavities Control loopsGravitational wave detectorUpgrade[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]upgradecontrol systemGravitational wavelongitudinalAstrophysics::High Energy Astrophysical PhenomenainterferometerAstrophysics::Cosmology and Extragalactic Astrophysicscontrol loops; gravitational wave detectors; interferometer; suspended optical cavitiesgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black holebinary: coalescence0103 physical sciencesControl loops[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and AstrophysicssensitivityLIGOgravitational radiation detectordetector: sensitivityNeutron star* Automatic Keywords *VIRGOblack hole: binaryControl systemgravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

2019

Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this sear…

binary: massneutron star: binaryAstronomybinary: angular momentumAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsLIMITSclustersLIGOgravitational waveGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01black hole: spinPhysicsintermediate mass black hole binarieNumerical relativityGeneral relativitygravitational wavesgravitational waves; intermediate mass black hole binaries; Advanced LIGO and VirgoPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenastarsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravitySTARS; CLUSTERS; LIMITSAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black hole0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technology010308 nuclear & particles physicsGravitational waveAdvanced LIGO and Virgointermediate mass black hole binariesRCUKGravitational Wave Physicsblack hole: massMass ratiobinary: compact04.80.NnLIGOgravitational radiation detectorNeutron starVIRGOblack hole: binaryIntermediate-mass black holerelativity theorygravitational radiation: emission95.55.Ymmass ratioDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik07.05.Kflimits[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CLUSTERSSTARSGravitational waves Black holes (astronomy) Gravitational self force
researchProduct

Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects

2018

We present TEOBResumS, a new effective-one-body (EOB) waveform model for nonprecessing (spin-aligned) and tidally interacting compact binaries.Spin-orbit and spin-spin effects are blended together by making use of the concept of centrifugal EOB radius. The point-mass sector through merger and ringdown is informed by numerical relativity (NR) simulations of binary black holes (BBH) computed with the SpEC and BAM codes. An improved, NR-based phenomenological description of the postmerger waveform is developed.The tidal sector of TEOBResumS describes the dynamics of neutron star binaries up to merger and incorporates a resummed attractive potential motivated by recent advances in the post-Newt…

data analysis methodneutron star: binaryGravitational waves effective-one-bodyAstronomyBinary numberFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Parameter spacegravitational radiation: direct detection01 natural sciencesGeneral Relativity and Quantum CosmologyNumerical studies of other relativistic binaries; Neutron stars; black holes (astrophysics); Gravitational wavesNeutron starsGravitational wavesGravitationBinary black holebinary: coalescence0103 physical sciencesnumerical methodsblack holes (astrophysics)010306 general physicsGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmologyequation of statePhysics010308 nuclear & particles physicsNumerical studies of other relativistic binarieshigher-order: 0spin: effectGravitational Waves analytical template modeling LIGO Virgo numerical relativity Neutron Stars parameter estimationRadiusbinary: compactLIGOgravitational radiation detectorComputational physicsFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIdetector: sensitivityNeutron starNumerical relativityblack hole: binaryGeneral relativityrelativity theorygravitation: self-force[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]effective-one-body
researchProduct

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2017

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…

neutron star: binary[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]X-ray binaryADVANCED LIGOAstrophysicsKilonovagravitational waves; LIGO; binary neutron star inspiralspin01 natural sciencesLIGOGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Electromagnetic observationsGravitational-wave signals3100 General Physics and AstronomyPoint MassesAstrophysics - High Energy Astrophysical PhenomenaBlack-Hole MergersBinary neutron starsBlack HolesX-ray bursterCoalescing BinariesAstrophysics::High Energy Astrophysical Phenomena10192 Physics InstituteGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesGravitational wavesNeutron starsPhysics and Astronomy (all)ddc:530Electromagnetic spectraNeutrons010308 nuclear & particles physicsVirgoGamma raysAstronomyRCUKVIRGOelectromagneticgravitational radiation: emissionStellar black holeGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Compact Binariesbinary: masscosmological modelAstronomyGeneral Physics and AstronomyAstrophysicsneutron starsGamma ray burstsGeneral Relativity and Quantum CosmologyGravitational wave detectorsUniverseDENSE MATTER010303 astronomy & astrophysicsastro-ph.HEPhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectsFalse alarm rateEQUATION-OF-STATEMergers and acquisitionsgravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]530 PhysicsMERGERSGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.HEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstgravitational radiation: direct detectionMerging[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]GAMMA-RAY BURSTLIGO (Observatory)binary: coalescenceGravitational waves neutron stars gamma-ray burst LIGO Virgo0103 physical sciencesGW151226MASSESSTFCAstrophysics::Galaxy AstrophysicsPhysiqueGravitational wavegravitational radiationPULSARgravitational radiation detectorNeutron starPhysics and AstronomygravitationRADIATIONDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikbinary neutron star inspiralSignal detectionPHYS REV LETT PHYSICAL REVIEW LETTERS
researchProduct